Abstract
Demand forecasting is key to the efficient management of electrical energy systems. A novel approach is proposed in this paper for short term electrical load forecasting by combining the wavelet transform and neural networks. The electrical load at any particular time is usually assumed to be a linear combination of different components. From the signal analysis point of view, load can also be considered as a linear combination of different frequencies. Every component of load can be represented by one or several frequencies. The process of the proposed approach first decomposes the historical load into an approximate part associated with low frequencies and several detail parts associated with high frequencies through the wavelet transform. Then, a radial basis function neural network, trained by low frequencies and the corresponding temperature records is used to predict the approximate part of the future load. Finally, the short term load is forecasted by summing the predicted approximate part and the weighted detail parts. The approach has been tested by the 1997 data of a practical system. The results show the application of the wavelet transform in short term load forecasting is encouraging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.