Abstract
In this paper, fractal theory and wavelet transform are combined to detect and classify self-extinguishing and fugitive scenarios of power quality disturbances (PQDs). After deciding whether the disturbance is simple or complex, the additional voltage is denoised through Discrete Wavelet Transform (DWT); the denoising process is adapted according to whether the distorted voltage contains oscillatory transients or not. At the detection stage, the grille fractal dimension of the DWT decomposition detail is computed. Then, a threshold is deduced to detect the start and end moments of the disturbance. The results reveal that the proposed detection scheme yields accurate location of PQDs even in the presence of high oscillatory transients. An algorithm based on geometric and statistical approaches is developed at the classification stage to recognize PQDs automatically. The geometric classification is based on Continuous Wavelet Transform (CWT), whereas the statistical classification is based on Multifractal Detrended Fluctuations Analysis (MFDFA) and an energy metric. The results prove that the combination of geometric and statistical classification can serve as an effective discrimination tool for PQDs. The major strength of the proposed approach is its ability to interpret the impact of each disturbance on the multifractal behavior of the nominal voltage, thus giving the possibility to draw the necessary generalizations for real-time applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Circuits, Systems and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.