Abstract
In the present work, the characteristics of physical model unsteady nanofluid flow and heat transfer in an asymmetric porous channel are analyzed numerically using wavelet collocation method. Using similarity transformation, unsteady two-dimensional flow model of nanofluid in a porous channel through expanding or contracting walls has been transformed into a system of nonlinear ordinary differential equations (ODEs). Then, the obtained nonlinear system of ODEs is solved via wavelet collocation method. The effect of various emerging parameters, such as nanoparticle volume fraction, Reynolds number (Re), and expansion ratio have been analyzed on velocity and temperature profiles. Numerical results have been presented in form of figures and tables. For some special cases, the obtained numerical results are compared with exact one and found that the results are good in agreement with exact solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.