Abstract

The goal of this study is to analyze the use of wavelet- based shape features for automated recognition of mammographic mass shapes. Two sets of shape features are used. The first set includes wavelet-based scalar-energy features. The mass boundary radial distance memory is decomposed using a discrete wavelet transform. The energy of the coefficients at each scale are computed, and these energy values are then used to form a feature vector. Several mother wavelets are used for the wavelet-based shape features: Daubechies-3 (DB3), DB5, DB7, DB9, DB11, DB13, DB15, Coiflets-3 (C3), C5, Symlets-2 (S2), S4, S6, and S8. The second set includes the following traditional features: radial distance mean, standard deviation, zero-crossing count, roughness index, entropy, and compactness. For each set of shape features, linear discriminant analysis is used to appropriately weight the features, and a minimum Euclidean distance classifier is used to separate the shapes into three classes: round, lobular, and irregular. The classification results, as well as false positive and false negative rates, are compared for each set of shape features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call