Abstract
This study presents developing procedures and verification of a new hybrid model, namely wavelet packet-genetic programming (WPGP) for short-term meteorological drought forecast. To this end, the multi-temporal standardized precipitation evapotranspiration index (SPEI) has been used as the drought quantifying parameter at two meteorological stations at Ankara province, Turkey. The new WPGP model comprises two main steps. In the first step, the wavelet packet, which is a generalization of the well-known wavelet transform, is used to decompose the SPEI series into deterministic and stochastic sub-signals. Then, classic genetic programming (GP) is applied to formulate the deterministic sub-signal considering its effective lags. To characterize the stochastic component, different theoretical probability distribution functions were assessed, and the best one was selected to integrate with the GP-evolved function. The efficiency of the new model was cross-validated with the first order autoregressive (AR1), GP, and random forest (RF) models developed as the benchmarks in the present study. The results showed that the WPGP is a robust model, superior to AR1 and RF, and significantly increases the predictive accuracy of the standalone GP model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Teknik Dergi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.