Abstract
Abstract In this article, compact finite difference approximations for first and second derivatives on the non-uniform grid are discussed. The construction of diffusion wavelets using compact finite difference approximation is presented. Adaptive grids are obtained for non-smooth functions in one and two dimensions using diffusion wavelets. High-order accurate wavelet-optimized compact finite difference (WOCFD) method is developed to solve convection–diffusion equations in one and two dimensions on an adaptive grid. As an application in option pricing, the solution of Black–Scholes partial differential equation (PDE) for pricing barrier options is obtained using the proposed WOCFD method. Numerical illustrations are presented to explain the nature of adaptive grids for each case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Nonlinear Sciences and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.