Abstract

A wavelet neural network (WNN) model in quantitative structure property relationship (QSPR) was developed for predicting solubility of 25 anthraquinone dyes in supercritical carbon dioxide over a wide range of pressures (70–770 bar) and temperatures (291–423 K). A large number of descriptors were calculated with Dragon software and a subset of calculated descriptors was selected from 18 classes of Dragon descriptors with a stepwise multiple linear regression (MLR) as a feature selection technique. Six calculated and two experimental descriptors, pressure and temperature, were selected as the most feasible descriptors. The selected descriptors were used as input nodes in a wavelet neural network (WNN) model. The wavelet neural network architecture and its parameters were optimized simultaneously. The data was randomly divided to the training, prediction and validation sets. The predictive ability of the model was evaluated using validation data set. The root mean squares error (RMSE) and mean absolute errors were 0.339 and 0.221, respectively, for the validation data set. The performance of the WNN model was also compared with artificial neural network (ANN) model and the results showed the superiority of the WNN over ANN model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call