Abstract
We consider the prediction problem of a continuous-time stochastic process on an entire time-interval in terms of its recent past. The approach we adopt is based on the notion of autoregressive Hilbert processes that represent a generalization of the classical autoregressive processes to random variables with values in a Hilbert space. A careful analysis reveals, in particular, that this approach is related to the theory of function estimation in linear ill-posed inverse problems. In the deterministic literature, such problems are usually solved by suitable regularization techniques. We describe some recent approaches from the deterministic literature that can be adapted to obtain fast and feasible predictions. For large sample sizes, however, these approaches are not computationally efficient. With this in mind, we propose three linear wavelet methods to efficiently address the aforementioned prediction problem. We present regularization techniques for the sample paths of the stochastic process and obtain consistency results of the resulting prediction estimators. We illustrate the performance of the proposed methods in finite sample situations by means of a real-life data example which concerns with the prediction of the entire annual cycle of climatological El Niño-Southern Oscillation time series 1 year ahead. We also compare the resulting predictions with those obtained by other methods available in the literature, in particular with a smoothing spline interpolation method and with a SARIMA model.
Paper version not known
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.