Abstract
A time-series similarity measurement method based on wavelet and matrix transform was proposed, and its anti-noise ability, sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace, and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example, the experimental results show that the proposed method has low dimension of feature vector, the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method, the sensitivity of proposed method is 1/3 as large as that of plain wavelet method, and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.