Abstract
Several methods have been used to predict daily solar radiation in recent years, such as artificial intelligence and hybrid models. In this paper, a Wavelet coupled Gaussian Process Regression (W-GPR) model was proposed to predict the daily solar radiation received on a horizontal surface in Ghardaia (Algeria). A statistical period of four years (2013 -2016) was used where the first three years (2013-2015) are used to train model and the last year (2016) to test the model for predicting daily total solar radiation. Different types of wave mother and different combinations of input data were evaluated based on the minimum air temperature, relative humidity and extraterrestrial solar radiation on a horizontal surface. The results demonstrated the effectiveness of the new hybrid model W-GPR compared to the classical GPR model in terms of Root Mean Square Error (RMSE), relative Root Mean Square Error (rRMSE), Mean Absolute Error (MAE) and determination coefficient (R2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.