Abstract
AbstractForecasting solar radiation is fundamental to several domains related to renewable energy where several methods have been used to predict daily solar radiation, such as artificial intelligence and hybrid models. Recently, the Gaussian process regression (GPR) algorithm has been used successfully in remote sensing and Earth sciences. In this paper, a wavelet-coupled Gaussian process regression (W–GPR) model was proposed to predict the daily solar radiation received on a horizontal surface in Ghardaia (Algeria). For this purpose, 3 years of data (2013–15) have been used in model training while the data of 2016 were used to validate the model. In this work, different types of mother wavelets and different combinations of input data were evaluated based on the minimum air temperature, relative humidity and extraterrestrial solar radiation on a horizontal surface. The results demonstrated the effectiveness of the new hybrid W–GPR model compared with the classical GPR model in terms of root mean square error (RMSE), relative root mean square error (rRMSE), mean absolute error (MAE) and determination coefficient (R2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.