Abstract

Abstract How to reconstruct the scene (a visible surface) from a set of scattered, noisy and possibly sparse range data is a challenging problem in robotic navigation and computer graphics. As most real scenes can be modeled by piecewise smooth surfaces, traditional surface fitting techniques (e.g. smoothing spline) generally can not preserve sharp discontinuities of surfaces. Based on sparse approximation of piecewise smooth functions in frame domain, we propose a new tight frame based formulation for reconstructing a piecewise smooth surface from a sparse range data set, which is robust to both additive noise and outliers. Furthermore, the resulting minimization problem from our formulation can be efficiently solved by the split Bregman method [1] , [2] . The numerical experiments show that the proposed approach is capable of reconstructing a piecewise smooth surface with sharp edges from sparse range data corrupted with noise and outliers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.