Abstract
<abstract><p>This paper studies nonparametric estimations of the derivatives $ r^{(m)}(x) $ of the variance function in a heteroscedastic model. Using a wavelet method, a linear estimator and an adaptive nonlinear estimator are constructed. The convergence rates under $ L^{\tilde{p}} (1\leq \tilde{p} &lt; \infty) $ risk of those two wavelet estimators are considered with some mild assumptions. A simulation study is presented to validate the performances of the wavelet estimators.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.