Abstract

Most of the work on wavelet estimation when the variables are measured with errors have centered around nonparametric approaches which cause curse of dimensionality. In this paper it is aimed to avoid this complexity using wavelet semiparametric errors in variables regression model. Using theoretical arguments for nonparametric wavelet estimation a wavelet approach is represented to estimate partially linear errors in variables model which is a semiparametric model when explanatory variable of nonparametric part has measurement error. Assuming that the measurement error has a known distribution we derive an estimator of the linear parts' parameter. In simulation study derived method is compared with no measurement error case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.