Abstract

Spatiotemporal predictive learning is a paradigm that empowers models to learn spatial and temporal patterns by predicting future frames from past frames in an unsupervised manner. This method typically uses recurrent units to capture long-term dependencies, but these units often come with high computational costs and limited performance in real-world scenes. This paper presents an innovative Wavelet-based SpatioTemporal (WaST) framework, which extracts and adaptively controls both low and high-frequency components at image and feature levels via 3D discrete wavelet transform for faster processing while maintaining high-quality predictions. We propose a Time-Frequency Aware Translator uniquely crafted to efficiently learn short- and long-range spatiotemporal information by individually modeling spatial frequency and temporal variations. Meanwhile, we design a wavelet-domain High-Frequency Focal Loss that effectively supervises high-frequency variations. Extensive experiments across various real-world scenarios, such as driving scene prediction, traffic flow prediction, human motion capture, and weather forecasting, demonstrate that our proposed WaST achieves state-of-the-art performance over various spatiotemporal prediction methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call