Abstract
We propose a test to distinguish a weakly-dependent time series with a trend component, from a long-memory process, possibly with a trend. The test uses a generalized likelihood ratio statistic based on wavelet domain likelihoods. The trend is assumed to be a polynomial whose order does not exceed a known value. The test is robust to trends which are piecewise polynomials. We study the empirical size and power by means of simulations and find that they are good and do not depend on specific choices of wavelet functions and models for the wavelet coefficients. The test is applied to annual minima of the Nile River and confirms the presence of long-range dependence in this time series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.