Abstract

In this study, we look at the wavelet basis for the nonparametric estimation of density and regression functions for continuous functional stationary processes in Hilbert space. The mean integrated squared error for a small subset is established. We employ a martingale approach to obtain the asymptotic properties of these wavelet estimators. These findings are established under rather broad assumptions. All we assume about the data is that they are ergodic, but beyond that, we make no assumptions. In this paper, the mean integrated squared error findings in the independence or mixing setting were generalized to the ergodic setting. The theoretical results presented in this study are (or will be) valuable resources for various cutting-edge functional data analysis applications. Applications include conditional distribution, conditional quantile, entropy, and curve discrimination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.