Abstract
High-resolution image reconstruction refers to reconstructing a higher resolution image from multiple low-resolution samples of a true image. In Chan et al. (Wavelet algorithms for high-resolution image reconstruction, Research Report #CUHK-2000-20, Department of Mathematics, The Chinese University of Hong Kong, 2000), we considered the case where there are no displacement errors in the low-resolution samples, i.e., the samples are aligned properly, and hence the blurring operator is spatially invariant. In this paper, we consider the case where there are displacement errors in the low-resolution samples. The resulting blurring operator is spatially varying and is formed by sampling and summing different spatially invariant blurring operators. We represent each of these spatially invariant blurring operators by a tensor product of a lowpass filter which associates the corresponding blurring operator with a multiresolution analysis of L 2( R 2) . Using these filters and their duals, we derive an iterative algorithm to solve the problem based on the algorithmic framework of Chanet al. (Wavelet algorithms for high-resolution image reconstruction, Research Report #CUHK-2000-20, Department of Mathematics, The Chinese University of Hong Kong, 2000). Our algorithm requires a nontrivial modification to the algorithms in Chan et al. (Wavelet algorithms for high-resolution image reconstruction, Research Report #CUHK-2000-20, Department of Mathematics, The Chinese University of Hong Kong, 2000), which apply only to spatially invariant blurring operators. Our numerical examples show that our algorithm gives higher peak signal-to-noise ratios and lower relative errors than those from the Tikhonov least squares approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.