Abstract

Inertial navigation system (INS) is presently used in several applications related to aerospace systems and land vehicle navigation. An INS determines the position, velocity, and attitude of a moving platform by processing the accelerations and angular velocity measurements of an inertial measurement unit (IMU). Accurate estimation of the initial attitude angles of an IMU is essential to ensure precise determination of the position and attitude of the moving platform. These initial attitude angles are usually estimated using alignment techniques. Due to the relatively low signal-to-noise ratio of the sensor measurement (especially for the gyroscopes), the initial attitude angles may not be computed accurately enough. In addition, the estimated initial attitude angles may have relatively large uncertainties that may affect the accuracy of other navigation parameters. This article suggests processing the gyro and accelerometer measurements with multiple levels of wavelet decomposition to remove the high frequency noise components. The proposed wavelet de-noising method was applied on a navigational grade inertial measurement unit (LTN90-100). The results showed that accurate alignment procedure and fast convergence of the estimation algorithm, in addition to reducing the estimation covariance of the three attitude angles, could be obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.