Abstract

Two approaches to the analysis of nonstationary random signals are proposed and studied. The first approach is based on the adaptive Morlet wavelet that allows variations in time and frequency resolution of signals using an auxiliary control parameter. The second approach is related to the application of double correlation function that represents correlation of continuous wavelet transforms of two signals calculated in time and frequency domains. The advantages of the proposed correlation function in comparison with alternative correlation functions, in particular, analysis of both time and frequency correlations of nonstationary signals are outlined. Applications of the proposed approaches in the analysis of various transient processes in physics are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.