Abstract

The Ras superfamily of GTPases regulate critical cellular processes by shuttling between GTP-bound ON and GDP-bound OFF states. This switching mechanism is attributed to the conformational changes in two loops, SWI and SWII, upon GTP binding and hydrolysis. Since these conformational changes vary across the Ras superfamily, there is no generic parameter to define their functional states. A unique wavelet coherence (WC) analysis-based approach developed here shows that the structural changes in switch regions could be mapped onto the wavelet coherence phase couplings (WPCs). Thus, WPCs could serve as unique parameters to define their functional states. Disentanglement of WPCs in oncogenic GTPases shows how breakdown of structural allostery leads to their aberrant function. These observations stand out even for simulated ensemble of switch region conformers. Overall, for the first time, we show that WPCs could unravel the latent structural deviations in Ras proteins to decode their universal switching mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.