Abstract

Volterra series is a powerful mathematical tool for nonlinear system analysis, which extends the convolution integral for linear system to nonlinear system. There is a wide range of nonlinear engineering systems and structures which can be modeled as Volterra series. One question involved in modeling a functional relationship between the input and output of a system using Volterra series is to identify the Volterra kernel functions. In this article, a wavelet balance method-based approach is proposed to identify the Volterra kernel functions from observations of the in- and outgoing signals. The basic routine of the approach is that, from the system outputs under multilevel excitations, the Volterra series outputs of different orders are first estimated with the wavelet balance method, and then the Volterra kernel functions of different orders are separately estimated through their corresponding Volterra series outputs by expanding them with four-order B-spline wavelet on the interval. The simulation studies verify the effectiveness of the proposed Volterra kernel identification method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.