Abstract
Dynamic networks naturally appear in a multitude of applications from different fields. Analyzing and exploring dynamic networks in order to understand and detect patterns and phenomena is challenging, fostering the development of new methodologies, particularly in the field of visual analytics. In this work, we propose a novel visual analytics methodology for dynamic networks, which relies on the spectral graph wavelet theory. We enable the automatic analysis of a signal defined on the nodes of the network, making viable the robust detection of network properties. Specifically, we use a fast approximation of a graph wavelet transform to derive a set of wavelet coefficients, which are then used to identify activity patterns on large networks, including their temporal recurrence. The coefficients naturally encode the spatial and temporal variations of the signal, leading to an efficient and meaningful representation. This methodology allows for the exploration of the structural evolution of the network and their patterns over time. The effectiveness of our approach is demonstrated using usage scenarios and comparisons involving real dynamic networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Visualization and Computer Graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.