Abstract

Mental fatigue can affect cognitive function and interfere with motor performance. We examined if mental fatigue affected gait through age-specific modulation of wavelet-based time–frequency intermuscular beta-band coherence in muscles while walking on a treadmill at 1.2 m·s-1. The Psychomotor Vigilance Task, and the AX-Continuous Performance and the Stroop tests were used to induce mental fatigue in groups of healthy young and older participants. Mental fatigue reduced stance time, stride length, and marginally step width and increased cadence, stride length and stance time variability. In older compared with young participants before the induction of mental fatigue, wavelet-based time–frequency intermuscular beta-band coherence measured during walking was lower in the tibialis-peroneus and tibialis-gastrocnemius muscle pairs in specific phases of the gait cycle. In both age groups, after induction of mental fatigue, selected clusters of wavelet-based time–frequency intermuscular beta-band coherence measured during walking increased in the biceps-semitendinosus, rectus-vastus, tibialis-peroneus, gastrocnemius-soleus, and tibialis-gastrocnemius muscle pairs. In conclusion, age and mental fatigue seem to induce different effects on wavelet-based time–frequency intermuscular beta-band coherence measured during gait in healthy young and older adults’ ankle muscles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.