Abstract

Functional data characterize the quality or reliability performance of many manufacturing processes. As can be seen in the literature, such data are informative in process monitoring and control for nanomachining, for ultra-thin semiconductor fabrication, and for antenna, steel-stamping, or chemical manufacturing processes. Many functional data in manufacturing applications show complicated transient patterns such as peaks representing important process characteristics. Wavelet transforms are popular in the computing and engineering fields for handling these types of complicated functional data. This article develops a wavelet-based statistical process control (SPC) procedure for detecting ‘out-of-control’ events that signal process abnormalities. Simulation-based evaluations of average run length indicate that our new procedure performs better than extensions from well-known methods in the literature. More importantly, unlike recent SPC research on linear profile data for monitoring global changes of data patterns, our methods focus on local changes in data segments. In contrast to most of the SPC procedures developed for detecting a known type of process change, our idea of updating the selected parameters adaptively can handle many types of process changes whether known or unknown. Finally, due to the data-reduction efficiency of wavelet thresholding, our procedure can deal effectively with large data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.