Abstract
The ability to give a prognosis for failure of a system is a valuable tool and can be applied to electric motors. In this paper, three wavelet-based methods have been developed that achieve this goal. Wavelet and filter bank theory, the nearest-neighbour rule, and linear discriminant functions are reviewed. A framework for the development of a fault detection and classification algorithm based on the coefficients calculated from the discrete wavelet transform and using clustering is described. An experimental set-up based on RT-Linux is described and results from testing are presented, verifying the analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.