Abstract
The significance of intelligent sensor systems has grown across diverse sectors, including healthcare, environmental surveillance, industrial automation, and security. Photoacoustic gas sensors are a promising type of optical gas sensor due to their high sensitivity, enhanced frequency selectivity, and fast response time. However, they have limitations such as dependence on a high-power light source, a requirement for a high-quality acoustic signal detector, and sensitivity to environmental factors, affecting their accuracy and reliability. Machine learning has great potential in the analysis and interpretation of sensor data as it can identify complex patterns and make accurate predictions based on the available data. We propose a novel approach that utilizes wavelet analysis and neural networks with enhanced architectures to improve the accuracy and sensitivity of photoacoustic gas sensors. Our proposed approach was experimentally tested for methane concentration measurements, showcasing its potential to significantly advance the field of gas detection and analysis, providing more accurate and reliable results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.