Abstract

The delay performance of compression algorithms is particularly important when time-critical data transmission is required. In this paper, we propose a wavelet-based electrocardiogram (ECG) compression algorithm with a low delay property for instantaneous, continuous ECG transmission suitable for telecardiology applications over a wireless network. The proposed algorithm reduces the frame size as much as possible to achieve a low delay, while maintaining reconstructed signal quality. To attain both low delay and high quality, it employs waveform partitioning, adaptive frame size adjustment, wavelet compression, flexible bit allocation, and header compression. The performances of the proposed algorithm in terms of reconstructed signal quality, processing delay, and error resilience were evaluated using the Massachusetts Institute of Technology University and Beth Israel Hospital (MIT-BIH) and Creighton University Ventricular Tachyarrhythmia (CU) databases and a code division multiple access-based simulation model with mobile channel noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.