Abstract

Terahertz computed tomography has been developed based on coherent THz detection and filtered back projection (FBP) algorithms, which allows the global imaging of the internal structure and extraction of the frequency dependent properties. It offers a promising approach for achieving non-invasive inspection of solid materials. However, with traditional CT techniques, i.e. FBP algorithms, full exposure data are needed for inverting the Radon transform to produce cross sectional images. This remains true even if the region of interest is a small subset of the entire image. For time-domain terahertz measurements, the requirement for full exposure data is impractical due to the slow measurement process. This paper explores time domain reconstruction of terahertz measurements by applying wavelet-based filtered back projection algorithms for recovery of a local area of interest from terahertz measurements within its vicinity, and thus improves the feasibility of using terahertz imaging to detect defects in solid materials and diagnose disease states for clinical practise, to name a few applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.