Abstract

The increasing proliferation of power electronic converters, nonlinear loads, and distributed generation are leading to increased levels of harmonic and interharmonics in power networks. As a consequence, power quality (PQ) has become a critical performance indicator for power utilities and end-users. This study proposes a novel harmonic estimation method based on the real-time stationary discrete wavelet packet transform (RT-SDWPT). The proposed technique decomposes an input signal into frequency bands with harmonic information at cutoff frequencies and uses a compensation strategy to estimate root mean square (RMS) values of harmonics at every sampling period. The performance and effectiveness of the proposed method are assessed using real measurement data from field cases and experimental setup. The real measurements include challenging scenarios with harmonics, subharmonics, interharmonics, frequency deviation, and non-stationary PQ events. The proposed method outperforms the harmonic estimation provided by the discrete Fourier transform (DFT)-based approach and existing wavelet packet-based methods in terms of accuracy and speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call