Abstract

We describe how wavelets may be used to solve partial differential equations. These problems are currently solved by techniques such as finite differences, finite elements and multigrid. The wavelet method, however, offers several advantages over traditional methods. Wavelets have the ability to represent functions at different levels of resolution, thereby providing a logical means of developing a hierarchy of solutions. Furthermore, compactly supported wavelets (such as those due to Daubechies) are localized in space, which means that the solution can be refined in regions of high gradient, e.g. stress concentrations, without having to regenerate the mesh for the entire problem. To demonstrate the wavelet technique, we consider Poisson's equation in two dimensions. By comparison with a simple finite difference solution to this problem with periodic boundary conditions we show how a wavelet technique may be efficiently developed. Dirichlet boundary conditions are then imposed, using the capacitance matrix method described by Proskurowski and Widlund and others. The convergence of the wavelet solutions are examined and they are found to compare extremely favourably to the finite difference solutions. Preliminary investigations also indicate that the wavelet technique is a strong contender to the finite element method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.