Abstract

This paper proposes the combined methods of Wavelet Transform (WT) and Euclidean Distance (ED) to estimate the expected value of the possibly feature vector of Indonesian syllables. This research aims to find the best properties in effectiveness and efficiency on performing feature extraction of each syllable sound to be applied in the speech recognition systems. This proposed approach which is the state-of-the-art of the previous study consist of three main phase. In the first phase, the speech signal is segmented and normalized. In the second phase, the signal is transformed into frequency domain by using the WT. In the third phase, to estimate the expected feature vector, the ED algorithm is used. Th e result shows the list of features of each syllables can be used for the next research, and some recommendations on the most effective and efficient WT to be used in performing syllable sound recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.