Abstract
We suggest an adaptive sampling rule for obtaining information from noisy signals using wavelet methods. The technique involves increasing the sampling rate when relatively high-frequency terms are incorporated into the wavelet estimator, and decreasing it when, again using thresholded terms as an empirical guide, signal complexity is judged to have decreased. Through sampling in this way the algorithm is able to accurately recover relatively complex signals without increasing the long-run average expense of sampling. It achieves this level of performance by exploiting the opportunities for near-real time sampling that are available if one uses a relatively high primary resolution level when constructing the basic wavelet estimator. In the practical problems that motivate the work, where signal to noise ratio is particularly high and the long-run average sampling rate may be several hundred thousand operations per second, high primary resolution levels are quite feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.