Abstract
This paper addresses the problem of detecting significant changes in fMRI time series that are correlated to a stimulus time course. This paper provides a new approach to estimate the parameters of a semiparametric generalized linear model of fMRI time series. The fMRI signal is described as the sum of two effects: a smooth trend and the response to the stimulus. The trend belongs to a subspace spanned by large scale wavelets. The wavelet transform provides an approximation to the Karhunen-Loève transform for the long memory noise and we have developed a scale space regression that permits to carry out the regression in the wavelet domain while omitting the scales that are contaminated by the trend. In order to demonstrate that our approach outperforms the state-of-the art detrending technique, we evaluated our method against a smoothing spline approach. Experiments with simulated data and experimental fMRI data, demonstrate that our approach can infer and remove drifts that cannot be adequately represented with splines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.