Abstract

Dynamic texture classification has attracted growing attention. Characterization of a dynamic texture is vital to address the classification problem. This paper proposes a dynamic texture descriptor based on the dual-tree complex wavelet transform and the Gumbel distribution. The method takes out the median values of coefficient magnitudes in each nonoverlapping block of a detail subband and models them with the Gumbel distribution. The classification is realized by comparing the similarity between the estimated distributions of all detail subbands. The experimental results on the benchmark dynamic texture database demonstrate better histogram fitting and promising classification performance of the dynamic texture descriptor compared with the current existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.