Abstract

Stochastic coherent adaptive large-eddy simulation is a novel approach to the numerical simulation of turbulence, where the coherent energetic eddies are solved for, while modeling the influence of the less energetic coherent/incoherent background flow. The formal separation between resolved and unresolved field is obtained by wavelet threshold filtering that is inherent to the adaptive wavelet collocation numerical method. A new explicit wavelet filtering strategy is introduced and tested, by considering two different filtering levels: the physical level, which controls the turbulence model, and the numerical level that is responsible for the accuracy of numerical simulations. The theoretical basis for wavelet-based adaptive large-eddy simulation with explicit filtering and consistent dynamic modeling is given. Numerical experiments are presented for unsteady homogeneous turbulence, demonstrating the existence of grid-independent solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.