Abstract

The feature learning methods based on convolutional neural network (CNN) have successfully produced tremendous achievements in image classification tasks. However, the inherent noise and some other factors may weaken the effectiveness of the convolutional feature statistics. In this paper, we investigate Discrete Wavelet Transform (DWT) in the frequency domain and design a new Wavelet-Attention (WA) block to only implement attention in the high-frequency domain. Based on this, we propose a Wavelet-Attention convolutional neural network (WA-CNN) for image classification. Specifically, WA-CNN decomposes the feature maps into low-frequency and high-frequency components for storing the structures of the basic objects, as well as the detailed information and noise, respectively. Then, the WA block is leveraged to capture the detailed information in the high-frequency domain with different attention factors but reserves the basic object structures in the low-frequency domain. Experimental results on CIFAR-10 and CIFAR-100 datasets show that our proposed WA-CNN achieves significant improvements in classification accuracy compared to other related networks. Specifically, based on MobileNetV2 backbones, WA-CNN achieves 1.26% Top-1 accuracy improvement on the CIFAR-10 benchmark and 1.54% Top-1 accuracy improvement on the CIFAR-100 benchmark.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.