Abstract
In this paper, new wavelet-based affine invariant functions for shape representation are presented. Unlike the previous representation functions, only the approximation coefficients are used to obtain the proposed functions. One of the derived functions is computed by applying a single wavelet transform; the other function is calculated by applying two different wavelet transforms with two different wavelet families. One drawback of the previously derived detail-based invariant representation functions is that they are sensitive to noise at the finer scale levels, which limits the number of scale levels that can be used. The experimental results in this paper demonstrate that the proposed functions are more stable and less sensitive to noise than the detail-based functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.