Abstract

Abstract In this study, wavelet-support vector machine (WSVM) is proposed for drought forecasting using the Standardized Precipitation Index (SPI). In this way, the SPI time series of Urmia Lake watershed is decomposed to multiple frequency time series by wavelet transform. Then, these time sub-series are applied as input data to the support vector machine (SVM) model to forecast drought. Also, a cuckoo search (CS)-based approach is proposed for parameter optimization of SVM, finding the best initial constant parameters of the SVM algorithm. The obtained results indicate that the radial basis function (RBF)-kernel function of the SVM algorithm has high efficiency in the SPI modeling, resulting in a determination coefficient (DC) of 0.865 in verification step. In the WSVM model, the Coif1, which is considered as a mother wavelet function with decomposition level of five, shows a better performance with DC of 0.954 in verification step, revealing that the proposed hybrid WSVM model outperforms the single SVM model in forecasting SPI time series. Also, DC of cuckoo search-support vector machine (CS-SVM) is calculated to be 0.912 in verification step, indicating the fact that the proposed CS-SVM model shows better efficiency than single SVM model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.