Abstract

AbstractPreferential and lateral subsurface flow (LSF) may be responsible for the accelerated transport of water and solutes in sloping agricultural landscapes; however, the process is difficult to observe. One idea is to compare time series of soil moisture observations in the field with those in lysimeters, where flow is vertically oriented. This study aims at identifying periods of deviations in soil water contents and pressure heads measured in the field and in a weighing lysimeter with the same soil profile. Wavelet coherency analysis (WCA) was applied to time series of hourly soil water content and pressure head data (15‐, 32‐, 60‐, 80‐, and 140‐cm depths) from Colluvic Regosol soil profiles. The phase shifts and periodicities indicated by the WCA plots reflected the response times to rain events in the same depth of lysimeter and field soil. For many rain events and depths, pressure and moisture sensors installed in the field soil responded earlier than those in the lysimeter. This could be explained by either vertical preferential flow or LSF from upper hillslope positions. Vice versa, a faster response in the lysimeter soil could be indicative for vertical preferential flow effects. Dry weather conditions and data gaps limited the number of periods with elevated soil moisture in 2016–2018, in which LSF was likely to occur. The WCA plots comprise all temporal patterns of time shifts and correlations between larger data time series in a condensed form to identify potentially relevant periods for more detailed analyses of subsurface flow dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call