Abstract

In this work, the results of an analysis of the response of a near-resonant series resistance−inductance−capacitance (RLC) electric circuit with time-dependent forcing frequency by means of a wavelet cross-correlation approach are reported. In particular, it is shown how the wavelet approach enables frequency and time analysis of the circuit response to be carried out simultaneously—this procedure not being possible by Fourier transform, since the frequency is not stationary in time. A series RLC circuit simulation is performed by using the Simulation Program with Integrated Circuits Emphasis (SPICE), in which an oscillatory sinusoidal voltage drive signal of constant amplitude is swept through the resonant condition by progressively increasing the frequency over a 20-second time window, linearly, from 0.32 Hz to 6.69 Hz. It is shown that the wavelet cross-correlation procedure quantifies the common power between the input signal (represented by the electromotive force) and the output signal, which in the present case is a current, highlighting not only which frequencies are present but also when they occur, i.e. providing a simultaneous time-frequency analysis. The work is directed toward graduate Physics, Engineering and Mathematics students, with the main intention of introducing wavelet analysis into their data analysis toolkit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.