Abstract

The aim of this study is to identify the complex temporary cycles in fluctuations of climatic factors in Khanty-Mansiysk using wavelet analysis. The dynamics of temperature fluctuations in the period 2001 and 2014 shows a significant circannual cycle. Variations of barometric pressure are polycyclic. Descending capacity of rhythms with a period of 5.57 years; 1.02 years and rhythms close to the semiannual, seasonal and cirradian: 173.4 days; 109.3 days; 37.2 days are observed. Humidity varies in circumannual rhythm, intraannual dynamic is the following: 173.4 days; 127.5 days; 68.9 days. Barometric tendency except circannual rhythm is characterized by the rhythm with a period of 3.01 years, and intra-annual intercalary: 173.4 days; 109.3 days; 59.1 days and 20.1 days. Changes of wind speed do not have circannual rhythm, but there are intra-annual variations with a period of 81.1 days and 40.2 days. The oxygen volume being calculated maintains the basic rhythm of such components as temperature, barometric pressure and humidity, namely circannual: two years, five years; two- one month. Indicators of air temperature, wind speed and barometric tendency show the greatest amplitude of oscillation. Visual analysis of coherence of individual rhythms with the same period reveals a florid desynchronosis, which explains negative correlation between the climatic parameters. Use of wavelet analysis to assess the short-term component of the climate processes allows to reveal periodical and aperiodical intercalary rhythms. These rhythms interfering with the steady beat identified by Fourier transform allow us to explain unsteady rhythmic changes implemented in climatic time series.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call