Abstract
Fiber wireless (FiWi) access network which is also referred as hybrid wireless optical broadband access network is one of the modern architecture to solve the problem of bandwidth availability and flexibility simultaneously. It integrates wireless frontend with optical backend. In FiWi network most of component remains idle for large duration, hence efficiency is very crucial. To improve energy efficiency in FiWi many multiple access (MA) techniques had been implemented at backend. However inclusion of multiple access techniques usually incur problem of delay, as data transfer in such network takes place only in the assigned slot of access technique. In this paper a novel architecture is proposed for FiWi which implements wavelength agile hybrid multiple access at backend and radio agile access technique at frontend. Further to improve delay performance, bandwidth availability and utilization of resources; a new scheduling approach is proposed for multiple access techniques implemented at frontend as well as backend. Delay performance, wavelength availability and load handling capacity of proposed approach is compared with different hybrid multiple access architecture. To best of our knowledge, wavelength agile and radio agile MA has been used for the first time in FiWi, moreover the proposed scheduling approach implemented on MA provide promising results in terms of delay and resource utilization. The performance of proposed work is also evaluated in terms of service and reservation delay component to indicate its utility in terms of actual information content per frame. The result shows effectiveness of proposed architecture over other existing architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.