Abstract

AlxGa1–xN/GaN disk-in-wire polar nanostructures were fabricated, and their optical properties were studied. Wavelength tuning was observed by locally controlling the strain in each nanopillar via its diameter. The measured wavelength shift was in an excellent agreement with a one-dimensional strain relaxation model considering only the elastic and piezoelectric properties of the material. The inhomogeneous broadening decreases and internal quantum efficiency increases with a decreasing nanopillar diameter. The potential extension of strain-induced wavelength tuning across ultraviolet through near infrared was also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.