Abstract

Multicolor plasmonic nanowire lasers enable below diffraction-limit directional optical waveguiding and amplification vital to the development of next generation compact on-chip optical communications, super-resolution imaging, display technologies, and so on. However, progress in developing these compact lasers for different wavelengths is severely curtailed by the few complex fabrication methods available. In this work, we demonstrate wavelength-tunable plasmonic nanowire lasers by leveraging the intrinsic optical self-absorption of the gain medium. The plasmonic lasing wavelength is tunable from 465 to 491 nm by simply adjusting the nanowire length, that is, by approximately 76% over the interval width of the emission spectrum. The Purcell factor of plasmonic nanowire cavity decreases with increasing nanowire length; while the propagation loss increases from 1020 to 8354 cm–1 with decreasing nanowire diameter, exhibiting a plasmonic-photonic mode transition at diameters around 120–150 nm. Importantly, ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.