Abstract

We numerically investigate the triple-band perfect absorption in a metal-insulator-metal structure. The absorption peak from the TE-polarized guided-mode resonance (GMR) is highly sensitive to the incident angle. Thus a wavelength-tunable perfect absorber (PA) based on the TE GMR is proposed for the first time. By the precise control of the incident angle, the ∼5 nm narrowband perfect absorber can be modulated linearly about 3nm/° in our structure. For single frequency light, the intensity tunability of the absorption between 6.2%-99.27% is realized only by changing the incident angle of 5°. The further study focused on TM polarization confirms the possibility to realize a polarization-independent wavelength-tunable PA. Such a PA possesses potential for applications in absorption filter, thermal emitter, surface-enhanced Raman scattering, biosensing, and nonlinear optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call