Abstract

A passively mode-locked Er3+-doped ZBLAN fiber laser around 3 μm with a wide wavelength tuning range is proposed and demonstrated. The laser cavity was comprised of a semiconductor saturable absorber mirror and a blazed grating to provide a wavelength tunable feedback. The central wavelength of the mode-locked fiber laser can be continuously tuned from 2710 to 2820 nm. The pulse train had a maximum average power of higher than 203 mW, a repetition rate of 28.9 MHz and a pulse duration of 6.4 ps, yielding a peak power of exceeding 1.1 kW. To the best of our knowledge, this is the first demonstration of a wavelength-tunable passively mode-locked mid-infrared fiber laser at 3 μm.

Highlights

  • Mode-locked mid-infrared lasers emitting near 3 μm waveband, featured with high peak power and short pulse duration, have gained increasing research interests owing to their promising applications including laser surgery, spectroscopy, material processing and mid-IR supercontinuum source pumping[1,2,3,4]

  • A possible solution is introducing a blazed grating as the cavity feedback, which has been widely used in Er3+ and Ho3+ doped fluoride fiber lasers operating in the continuous-wave regime[16,17] and the Q-switching[8,15] with a huge tuning range

  • As increasing the pump power, the fiber laser went through three stages, i.e., self-pulsing, stable Q-switched mode-locking (QML) and continuous-wave mode-locking (CML), which was analogous to the results in[3]

Read more

Summary

Introduction

Mode-locked mid-infrared (mid-IR) lasers emitting near 3 μm waveband, featured with high peak power and short pulse duration, have gained increasing research interests owing to their promising applications including laser surgery, spectroscopy, material processing and mid-IR supercontinuum source pumping[1,2,3,4]. Hu et al obtained passively mode-locked pulses with an average output power of 69.2 mW and a pulse duration of 6 ps from a Ho3+/Pr3+ co-doped ZBLAN fiber laser by inserting a SA of InAs in the ring cavity[7]. Compared with these SAs, SESAM, as a type of mature commercial SA, has been extensively adopted to attain stable passive mode-locking due to its excellent properties as well as the ability of customizing some of its parameters e.g., modulation depth, saturation fluence, recovery time, etc[8]. Combining a SESAM as the absorber and a blazed grating as the wavelength selective feedback, the laser produced CML pulses with a pulse duration of around 6 ps and a wavelength tuning range of over 100 nm from 2710 to 2820 nm

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.