Abstract

We numerically investigate the generation of wavelength-tunable few-cycle pulses in the visible spectral region through soliton-plasma interactions. We found that in a He-filled single-ring photonic crystal fiber (SR-PCF), soliton-plasma interactions could shift the optical spectra of pulses propagating in the fiber to shorter wavelengths. Through adjusting the single pulse energy launched into the fiber, the central wavelength of these blueshifting pulses could be continuously tuned over hundreds of nanometers, while maintaining a high energy conversion efficiency of >57%. Moreover, we observed that during the nonlinear pulse propagation in the SR-PCF, soliton self-compression effects enhanced the plasma density in the fiber at high pulse energies, which could modulate the phase-matching condition of ultraviolet (UV) dispersive wave (DW) generation. Furthermore, we employed the recently-developed model to study numerically the loss and dispersion of the SR-PCF in its resonant and anti-resonant spectral regions, and demonstrated the remarkable influence of the core-cladding resonance on the process of soliton-plasma interactions. The numerical results demonstrated here pave the way to develop wavelength-tunable, few-cycle light sources in the visible region, which may have considerable application potential in pump-probe spectroscopy and strong-field physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.