Abstract

The long-period fiber grating is mechanically induced over a twisted fiber and its characteristics are investigated. The amplitude as well as the wavelength shift of the resonance is studied in response to the applied twist and pressures. These resonances decrease in amplitude and shift to shorter wavelength side as the applied twist increases. The spectral responses of a grating assembly formed by two grating sections in series, one section with a twisted fiber and other with an untwisted fiber, are also investigated. Shearing stress and photo-elasticity causes the fiber to be circularly birefringent and the mechanically induced grating formed over the twisted fiber region causes the appearance of two resonances shifted away from the resonances of the untwisted grating section. At higher twist rates, resonant wavelength shift becomes insensitive to applied pressures, showing a reduction in the induced linear birefringence. The wavelength shift is almost symmetric with respect to the applied twist rate in clockwise and counterclockwise directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.