Abstract

Patterning and tuning of the refractive index in polymers by means of UV-light is of great interest for optical applications such as polymeric waveguides or optical data storage devices. In this contribution, we report on the synthesis of a polynorbornene based copolymer bearing ortho-nitrobenzyl and phenyl ester groups capable of undergoing the photo-induced cleavage reaction and in a subsequent step optionally the photo-Fries rearrangement upon irradiation with UV-light. The photoreaction of these aromatic ester groups was investigated by means of FTIR, UV-VIS and spectroscopic ellipsometry. Due to the difference in UV absorption of the photoreactive units, the o-nitrobenzyl ester can be selectively excited by UV-light above 300 nm, while a subsequent illumination with 254 nm induces the photo-Fries rearrangement of the remaining phenyl ester groups. The structural changes in the chemical composition upon UV illumination lead to significant changes in the refractive index of the polymeric materials. Whilst the photo-Fries rearrangement of the phenyl ester groups causes a remarkable increase in the refractive index, it was found that the photo-induced cleavage reaction of ortho-nitrobenzyl ester moieties causes a decrease of the refractive index. This fact enables a selective tailoring of the refractive index by the choice of the applied wavelength. In addition, a two-step irradiation procedure using a sequence of different wavelengths provides the possibility of erasing and even inverting the index contrast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.